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1 Introduction

During the operation of a nuclear power plant, there is a potential for accidental release and
dispersion of a nuclear material into ambient atmosphere and exposure of population to the
ionizing radiation. The radiation dose received by the public as a consequence of a release
comes mostly from five sources: External γ-radiation from the plume (cloud shine); external
γ-radiation from radioactive material deposited on the ground, trees, buildings (ground shine);
inhalation of radioactive material; external α, β and γ from radioactive material deposited on
the skin and ingestion of contaminated foodstuff.

The time lapse of a nuclear release can be split into two major phases. The first phase, the
early phase, covers the first few hours or days and lasts until the radioactive cloud has passed
the area of interest. During this phase, the irradiation from cloud shine, ground shine, skin
contamination and inhalation are most important. The second phase, the late phase, lasts until
the radiation levels resumes back to levels of background. In this phase, dose from ground
shine and ingestion becomes important. Negative impacts on population health are averted by
the means of countermeasures introduced as soon as possible after or even before the expected
release. These can be iodine prophylaxis, food bans, sheltering or evacuation.

The unavoidable condition for application of effective countermeasures is knowledge of spa-
tial and temporal distribution of radioactive pollutants. Former accidents on nuclear facilities
revealed unsatisfactory level of the decision support, both in hardware equipment (reliable com-
munication channels, computation techniques) and also deficiencies in software decision sup-
port systems (DSS). Great attention to this topic is paid since the Chernobyl disaster. DSS is
a software tool including a mathematical model for prediction of radionuclide spreading in the
environment (Pecha et al. [2007]). It can embody different subsystems for evaluation of ex-
pected consequences in terms of demographic or economic statistics. Output from the system
should provide to responsible authorities a rational basis for coordination of countermeasures
(Rojas-Palma [2005]), (Pecha and Hofman).

Data assimilation is a way how to increase reliability of such predictions in both the early
and the late phase of an accident (Smith and French [1993]). Recent development in hard-
ware allows us to implement assimilation algorithms based on methods earlier computationally
prohibited like sequential Monte Carlo methods (Hofman and Pecha [2008]). Marginalized
particle filter (Schön et al. [2007]) was used here to estimate model error covariance structure
in a parametrized form. Data assimilation is the optimal way how to exploit information from
both the measured data and expert-selected prior knowledge to obtain reliable estimates. This
paper studies exploitation of the data assimilation in the early phase of an accident when the
radioactive cloud is passing over the terrain.

The outline of this paper is as follows. Problem statement is given in Section 2. Atmo-
spheric dispersion model and methodology of calculation of cloud shine dose are described
here. Section 3 briefly discusses particle filter and puts it in the scope of the Bayesian filtering.
Section 4 presents a particular assimilation scenario and numerical experiment with simulated
measurements. Conclusion and future work is given in Section 5.
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2 Problem statement

Assume an accident in a nuclear power plant followed by aerial release of radionuclides. After
the release, there is a radioactive cloud passing over the terrain. The spatio-temporal distribution
of radionuclides is modeled by the means of numerical dispersion models in order to determine
appropriate countermeasures. Output of such a model is a prediction of radiation situation
given in terms of radiological quantities. Assume that the radiological quantity of interest is the
continuous activity concentration in air C(s, t), where s = (s1, s2, s3) is a vector of spatial
coordinates and t = 1, . . . , tMAX is the time index. Concentration of activity is important
radiological quantity which can be used for calculation of some other quantities like deposition
or doses from different pathways of irradiation. The concentration itself is a difficult quantity
to measure, therefore the measuring devices are designed to measure the γ-dose rate. It has
well developed measuring methodology. These measurements can be provided by stationary
measuring sites or mobile groups (Pecha et al. [2008]).

For computational reasons, the continuous quantity C(s, t) is evaluated only in a set of M
points of a computational grid in time t. Values of C(s, t) in the grid points are aggregated in
vector Ct. The available measurements of time integrated γ-dose rate at time t are aggregated
in vector yt. We can employ data assimilation and use the sparse measurements to improve
reliability of model predictions and thus allow for introduction of effective countermeasures in
the actually affected areas.

The evolution of C(s, t) is modeled by a dispersion model which is parametrized by a set of
parameters Θt. These parameters reflect physical processes involved in the atmospheric disper-
sion, atmospheric conditions and conditions of the accident in each time step t. Exact values of
the parameters are uncertain due to stochastic nature of the dispersion, lack of accurate infor-
mation, etc. Typically, the choice of values of these parameters is subject to an expert opinion.
The subjective choice of parameter values can introduce significant errors into the predictions.
To avoid this, we apply Bayesian approach and treat the parameters as random quantities. We
attempt to estimate parameter distributions in consecutive time step from measurements. The
number of parameters is potentially large but a restricted subset θt ⊂ Θt of the most important
parameters can be found for specific scenario (Pecha and Housa [2007]).

Since all uncertainty is modeled by probability distributions, the appropriate data assimilation
methodology is the Bayesian filtering. The introduced scenario fits into the family of state-space
models. Realization of the process at time t contains all the information about the past, which
is necessary in order to calculate the prediction of future evolution. State vector xt of the
system comprises of the two components xt = [Ct,θt]

T . The model of integrated γ-dose rate
measurements yt is given by the probability density function (pdf) p(yt|xt).

2.1 Evolution of state

Evolution of the state is given by the transition pdf p(xt|xt−1):

p(xt|xt−1) = p(Ct, θt|Ct−1, θt−1)

= p(Ct|Ct−1, θt, θt−1)p(θt|Ct−1, θt−1) (1)

Under the choice of atmospheric dispersion model CADM(θt) and its parameters θt, the evalua-
tion of Ct is deterministic:

p(Ct|Ct−1, θt, θt−1) = δ(Ct − CADM(θt)) (2)
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Time evolution of θt is given by the pdf p(θt|θt−1). Under the choice of time invariant parame-
ters (θt = θ), the transition pdf gets the form p(θt|θt−1) = δ(θt−θ). The process is initialized
with prior pdf p(θ0), typically covering wide range of possibilities.

We chose the Gaussian puff model (GPM) for the atmospheric dispersion model. It is
based on approximative solution of the three dimensional advection-diffusion equation (Bar-
rat [2001]):

C(s, t) =
QfD(t)R(t)
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where t is time index, Q is the total released activity in Bq and u is the wind speed. Dispersion
coefficients {σsi

}|i=1, 2, 3 are functions of distance from the source. Factor fD(t) stands for
radioactive decay, dry and wet deposition. The last term R(t) accounts for homogenization of
the vertical profile of concentration due to the reflections from the top of mixing layer and the
ground. See (Hofman et al.) for more details.

2.2 Measurement model

Measurements are assumed to be normally distributed and mutually independent given the state
xt. Errors of measurements are set proportional to the their values with an offset term modeling
the background radiation superposed to the actual dose measurements

yt ∼ N (Dt, Σ(Dt)), (4)

where N (a, Σ) is a multidimensional normal distribution with mean value a and a covariance
matrix Σ. Dt is a vector of measurements of time integrated absorbed γ-dose in all the measur-
ing sites available in time t. If the released nuclide is a noble gas, there is no deposition and we
don’t have to assume ground shine from deposited material. In this case, the measured quantity
is just the γ-dose from cloud shine. The time integral of absorbed γ-dose rate in tissue from a
mixture of radionuclides emitting photons on different energy levels Eγ,jis

Di,t =

t∫
t−1

∑
j

Kj µa,j Eγ,j
ρ

Φj(C(s(i), τ)) dτ, (5)

where Kj , µa,j and Φj are conversion coefficient, absorption coefficient and effective flux of
gamma rays, respectively. Subscript j stands for the fact, that the particular values depend on
the energy level Eγ,j . Summation is over assumed energy levels and ρ is the mass density of
air. Equation (5) defines the observation operator converting the concentration in Bqm−3 to the
time integrated γ-dose in Gy.

The general expression for Φ at a receptor located at s̃ = (s̃1, s̃2, s̃3) from a source of energy
Eγ dispersed in air is

Φ(s̃1, s̃2, s̃3, Eγ) =

∫∫∫
f(Eγ)B(Eγ, µr)C(s1, s2, s3)

4π r2
ds1 ds2 ds3, (6)

where r2 = (s̃1 − s1)
2 + (s̃2 − s2)

2 + (s̃3 − s3)
2, f(Eγ) is the branching ratio to the specific

energy, µ is the attenuation coefficient of air, B(Eγ, µr) is the dose build-up factor, C(s) is the
radionuclide concentration in Bqm−3 of isotope being considered. The build-up factor can be
calculated from Bergers analytical expression

B(Eγ, µ r) = 1 + a µr exp(b µr), (7)
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where coefficients µ, a and b depend on Eγ . Energy dependent absorption coefficient µa is
calculated as

µa = µ/

[
1 +

a

(1− b)2

]
. (8)

The simplicity of used Gaussian puff model (3) allows for numerical evaluation of integral (6)
on a compact support where the concentration is not negligible. If the radioactive plume is
large compared to the mean free path of the γ-rays, then the semi-infinite cloud approximation
of effective flux can be successfully used. See (Overcamp and Fjeld [1987]) for more details.

3 Data assimilation

Bayesian approach to data assimilation is based on representing uncertainty in the state via
probability distribution. When no measurements are available the probability distribution of the
considered state (the prior) must be rather wide to cover all possible realizations of the state.
Each incoming measurement brings information about the “true” state, reducing the original un-
certainty. In effect, with increasing measurements, the posterior pdf is narrowing down around
the best possible estimate.

Formally, the prior distribution p(x0) is transformed into posterior pdf p(xt|y1:t) using mea-
surements y1:t = {y1, . . . , yt} by recursive repetition of the following steps:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (9)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (10)

The process is initialized by prior p(x0).
Evaluation of (9) and (10) involves integration over complex spaces and often it is computa-

tionally infeasible. Suboptimal solution can be found by the means of sequential Monte Carlo
methods also known as particle filters (Doucet et al. [2001]). Particle filters numerically ap-
proximate posterior pdf p(xt|y1:t) using a set of particles x(i)

t and importance weights w(i)
t for

i = 1, 2, . . . , N :

p(xt|y1:t) ≈
N∑
i=1

w
(i)
t δ(xt − x(i)

t ), (11)

where δ() is the Dirac δ-function. The particles x(i)
t are drawn from a proposal pdf q(xt|y1:t),

which can be an arbitrary pdf the support of which includes the support of p(xt|y1:t). Under
this approximation, the integral equations (9)–(10) reduces to drawing new particles at each
time t and simple re-evaluation of the importance weights:

w
(i)
t ∝ w

(i)
t−1

p(yt|x
(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1,y1:t)

. (12)

Here, ∝ denotes equality up to multiplicative constant. This constant can be easily computed to
assure that

∑N
i=1w

(i)
t = 1. Equation (12) can be further simplified to w(i)

t ∝ w
(i)
t−1p(yt|x

(i)
t ) by

choosing q(xt|y1:t) ≡ p(xt|xt−1).
The approximation is easily extendable for prediction. Predicted pdf of the state at time t+k

is then approximated as

p(xt+k|y1:t) ≈
N∑
i=1

w
(i)
t δ(xt+k − x(i)

t+k), (13)
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where particles x(i)
t+k are recursively generated from p(xt|x(i)

t−1).

4 Numerical experiment

For purposes of numerical experiment was chosen assimilation scenario with an instantaneous
release of 41Ar. Numerical experiment is conducted as a twin experiment, where the measure-
ments are simulated via a twin model and perturbed. Convergence of radiological quantity of
interest—41Ar activity concentration in air—evaluated on basis of estimated parameters to that
produced by the twin model can be then assessed.

Since the argon is a noble gas, there is no deposition and consequently no ground shine.
The released activity is propagated via Gaussian puff model, (3). Half life of decay of 41Ar is
109.34 minutes. According to the TORI (Tables Of Radioactive Isotopes) database, there are
more energy levels of γ radiation produced by isotope 41Ar. We assume just the energy level
1293.57keV with the branching ratio 99.1%. The rest being included in the 0.9% is neglected
and the summation over energy levels in (5) can be omited.

The topology of measuring sites is similar to that of the Early Warning Network of the Czech
Republic (Pecha et al. [2008]). The source of simulated release is a nuclear power plant sur-
rounded by almost fifty stationary measuring sites capable to measure time integrated γ-dose
(5). Measuring sites are located more or less regularly in the area of radius 10km around the
source. The time step of assimilation algorithm was set to 10 minutes and the time horizon
tMAX=6 (60min). Measuring devices are assumed to integrate the γ-dose in 10 minute intervals
and then send measurements on-line to the quarters of crisis management. The height or release
is 50m and the magnitude of release Q=1.0E+10Bq of 41Ar. We assume no vertical velocity
or any significant heat capacity of the effluent and the effective height remains 50m during the
puff propagation. The time horizon spans up to 1 hour after the release start. It means, that we
performed 6 assimilation cycles consisting of time and data update steps.

4.1 Parametrization of atmospheric dispersion model

A group of the most significant variables affecting the dispersion process (including meteo-
rological inputs) was selected using available sensitivity and uncertainty studies performed on
Gaussian dispersion models (Pecha and Housa [2007]). Variables of the dispersion modelCADM

treated in this numerical example as uncertain are: magnitude of release Q, horizontal disper-
sion coefficients σsi

|i=1, 2 and also two meteorological inputs: wind speed u and wind direction
φ. Their parametrization via vector of random parameters θt = (ωt, ξt, ψt, ζt) and location
parameters (Q0, u0, φ0, σsi0

|i=1,2) is listed in Table 1. The parametrization was selected ac-

variable physical effect parametrization
Q magnitude of release Q = ωtQ0

u wind speed u = (1 + 0.1 ξt)u0 + 0.5 ξt
φ wind direction φ = φ0 + ∆φ, ∆φ = ψt (2π/80) rad.

σsi
|i=1, 2 horizontal dispersion σsi

= ζt σsi0
|i=1, 2

Table 1: Parametrization of selected variables and inputs to the ADM.

cording to that in the UFOMOD code (Panitz et al. [1989]). Location parameters refer to the
prior initialization of the variables. All the random parameters are treated as time constant:
θt = θ, even the parameters ξt and ψt concerning uncertainty in meteorological forecast. In
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case of time horizon of several hours, the assumption of stationarity of the meteorological con-
dition vanishes. Parametrization of the meteorological data has to be fragmented into shorter
time intervals (usually hourly intervals) where the assumption of stationarity holds.

The set of parameters θTWIN used for evaluation of the twin model simulating measurements
is

θTWIN = (0.72, −0.17, −8.3, 1.3). (14)

The comparison of initial CADM inputs with the initial setting and the twin model is in Table 2.
The real release was smaller in magnitude, with the lower wind speed, directed by approxi-
mately 37◦anticlockwise and the puff dispersed more than was a priori assumed. Horizontal

variable physical effect prior val. param. value true value
Q released activity 1.0E+10Bq 0.72 7.2E+09Bq
u wind speed 3.10m/s -0.17 2.96m/s
φ wind direction 310.0◦ -8.3 272.7◦

σsi
|i=1, 2 horizontal disp. σsi

= σsi
(dist)|i=1, 2 1.3 σsi

= 1.3σsi
|i=1, 2

Table 2: Values of variables of the initial model setting and the twin model.

dispersion parameters σs1 and σs2 are functions of distance the from source. The total num-
ber of N = 1000 particles was initialized with random vectors {θ(i), i = 1, . . . , 1000} with
elements generated according to the pdfs in Table 3.

parameter physical effect pdf type mean value std. dev.
ωt magnitude of release log-normal 1.0 1.0 (3σ truncated )
ξt wind speed uniform 0.0 1.0
ψt wind direction uniform 0.0 10.0
ζt horizontal dispersion log-normal 1.0 1.0 (3σ truncated )

Table 3: Prior distributions of estimated parameters θt = (ωt, ξt, ψt, ζt).

4.2 Results

The results are visualized in terms of the time integral of ground level concentration of activity
in air (TIC):

TIC(s) =

tMAX∫
0

C(s, τ) dτ. (15)

Computational grid is a rectangular grid of dimension 41 × 41 grid points with the grid step
1km. The source of pollution is placed in the center of the grid.

In Figure 1 left we can see the TIC evaluated by the atmospheric dispersion model without the
data assimilation and with initial setting of variables Q = Q0, u = u0, φ = φ0 and σsi

|i=1, 2 =
σsi0
|i=1, 2. This is done by setting θ = (1.0, 0.0, 0.0, 1.0, ), see Table 1. In Figure 1 right

is the TIC evaluated by the twin model used for simulation of measurements. In Figure 2
are visualized assimilation results. Assimilation results are presented in the form of expected
value of TIC with respect to the predictive densities at different time steps. Expected value of
prediction of TIC displayed in Figure 2 top left are based only on the measurements y1. Even
at this stage, the wind direction was correctly recognized, however other parameters, such as
parametrization of Q, are still too uncertain and the prediction differs from the twin model.
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With increasing time the measurements provide enough information and the expected values of
TIC are converging to the twin model.

Figure 1: Predicted TIC based on initial values without the data assimilation (left) and the twin
model (right).

Figure 2: Predicted TIC based on assimilation at t = 1, 2, 3, 4, 5, 6, respectively.

5 Conclusion

Rapid assessment of the situation in case of an aerial release of radionuclides is crucial for
planning of countermeasures. Introduced Bayesian methodology has very interesting proper-
ties suitable for this scenario. Specifically, it allows joint estimation of spatio-temporal distri-
bution of activity and parameters of the dispersion model. Thus, we obtain assimilated estimate
of the radiation situation on the terrain and a way how to easily extend this estimates to pre-
dictions on an arbitrary horizon. The presented scenario clearly illustrates the power of the
method. However, a lot of work is required to incorporate the method to the existing decision
support systems. We foresee the core of the work in development of more realistic models of
the state evolution and the measurements. For example, more realistic scenarios should con-
sider a mixture of radionuclides and extended set of uncertain variables. Such extension of the
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model inevitably increases complexity of the implied algorithm which may lead to computa-
tional difficulties. These may be overcome with exploitation of recent developments in the filed
of sequential sampling, such as adaptive resampling or problem specific proposal densities.
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